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Our time is characterized by an increasingly intensive use of actuators in extremely large fields 
of applications, from the largest to the smallest scales. The miniaturization of these systems adds 
new design constraints and requires the development of materials with controlled properties and 
robust models. One of the solutions being considered is the use of material exhibiting at least one 
strong multiphysic coupling (one of the physic being mechanics). This includes magnetostrictive 
materials [1], classical (SMA) or magnetic shape memory alloys (MSMA) [2], piezoelectric 
materials, multi-ferroic composite media, etc. One of the modeling challenges is to better describe 
the complex interactions observed experimentally (nonlinearity, non-monotony, irreversibly, 
dynamic and multiaxial effects etc ...), and to derive constitutive models with sufficient accuracy 
and validity range for the considered applications without requiring full field approach 
(micromagnetism, phase field) that still remain highly time-consuming. In this communication, the 
modeling of materials exhibiting magneto-elastic behavior in a reversible framework is addressed.  
 

Showing the relevancy of scale change requires first going back to the initial foundation of 
Gibbs free energy density at the local scale !  (J/m3) involving mechanical and magnetic terms. 
The variation of Gibbs free energy !!" !  is function of stress ! !  and magnetic field ! !  variations 
as control variables (1) (! !  is the total strain and !! the magnetic induction). 
 !"! = −!!:!!! − !! .!!!                   (1) 

 
Small perturbation hypothesis allows the total deformation !! to be considered as a sum of 

different contributions, highlighting some specific couplings between mechanics and another 
physic to be defined. In the case of the target materials, classical elastic !!!  and free deformation 
!!! associated with magnetostriction are considered leading to: 
!! =  !!! + !!! = !!!!:!! + !!!                   (2) 

 
!! is the 4th order local stiffness tensor. Derivation of the mechanical Gibbs free energy 

function involves consequently an integration of magnetostriction over the stress path making its 
expression complicated without any other assumption1 (3). The magnetic part of Gibbs free energy 
is obtained after a Legendre transformation of the Helmholtz free energy density usually expressed 
as function of magnetization instead of induction (even function of magnetization) (4) [3]. 
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1 Numerous authors simplify this expression by removing the pure mechanical part and forgetting 
to integrate the second part.  
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This expression is using a second order ! !!, 4

th order ! !!  and 6th order ! !
! !tensors as material 

dependent whose expressions are strongly correlated to material symmetries and requires 
assumptions for simplification. The scaling is relevant for that. 
 

The multiscale model of a representative volume element (RVE) that is proposed involves 
domain and grain as subscales (figure 1). Indeed magnetization at the domain scale has a constant 
norm equal to the saturation magnetization ! ! . At this scale the magnetostriction can be 
considered on the other hand as stress independent, allowing a simplification of the magneto-
elastic coupling energy term !!

!" as linearly dependent to stress and as a quadratic function of 
magnetization (5) [4].  
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! is the second order orientation tensor and !! is the piezomagnetic 4th order tensor defined by 

3 constants in the cubic crystallographic framework and reduced to 2 constants considering 
incompressibility. The constitutive behavior is assumed to follow a Boltzmann distribution 
allowing a statistical calculation of the domain familiesÕ volume fraction [5]. Localization and 
homogenization procedures, homogeneous stress and magnetic field conditions at the grain scale 
do complete the scheme. Some examples of applications and relevancy of stress dependent 
magnetostriction consideration (morphic effect) [3,6] will be detailed in the full paper.  
 

 
 

Figure 1: Detail of scales involved in the modeling approach 
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